Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Содержание

Пеноплекс или минеральная вата

Физические показатели минеральной ваты:

  • плотность – варьируется в широких пределах и может быть от 10 до 300 кг/м3;
  • теплопроводность (при плотности около 35 кг/м3) – 0.040-0.045 Вт/м*К;
  • поглощение влаги – более 1% (зависит от плотности);
  • паропроницаемость – 0.4-0.5 мг/час*м*Па;
  • максимальная температура выдерживания 450 С и выше.

Анализ указанных величин показывает то, что худшие показатели теплопроводности минеральной ваты скомпенсированы лучшей паропроницаемостью, стойкостью к высокой температуре и негорючестью. Использование мин. ваты оправдано именно в тех условиях, где важны перечисленные параметры.
Использование стекловатных утеплителей целесообразно применять в гаражах, в мастерских, в промышленных объектах, везде там, где существует повышенный риск пожара. Влажные помещение, такие как сауны, бани и бассейне лучше утеплять тоже при помощи минеральных утеплителей, так в этом случае важна паропроницаемость изолятора.

Экологическая безопасность утеплителей на основе полистирола и минеральной ваты зависит от условий применения. Полистирольные производные в случае пожаров могут поддерживать горение, при этом выделяют токсичный дым. Минеральные изоляторы тепла устойчивы к высоким температурам и не разлагаются, но со временем могут стареть и выделять пыль, в виде составляющих материал, микроволокон. Наружный метод утепления стен при помощи базальтовой ваты, в этом плане, безопасен.

Проект утепления должен учитывать возможное воздействие воды. Минеральные материалы подвержены большему накоплению жидкости, при этом их теплопроводность будет повышена.

Последовательность действий

Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо. 

Если величина ниже, чем в таблице, тогда нужно увеличить толщину  утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

Отличительные особенности утеплителя из ППЭ

Технические характеристики

Теплоизоляция из вспененного полиэтилена представляет собой изделия с закрытопористой структурой, мягкие и эластичные, имеющие соответствующую своему назначению форму. Они обладают рядом свойств, характеризующих газонаполненные полимеры:

  • Плотностью от 20-ти до 80-ти кг/м3,
  • Диапазоном рабочих температур от -60-ти до +100 0C,
  • Отличной влагостойкостью, при которой влагопоглощение составляет не более 2 % объёма, и практически абсолютной паронепроницаемостью,
  • Высоким показателем шумопоглощения уже при толщине, больше либо равной 5-ти мм,
  • Стойкостью к большинству химически активных веществ,
  • Отсутствием гниения и поражения грибком,
  • Очень продолжительным сроком эксплуатации, в некоторых случаях достигающим более 80-ти лет,
  • Нетоксичностью и экологической безопасностью.

Но самой важной характеристикой материалов из пенополиэтилена является очень малая теплопроводность, благодаря которой они могут использоваться в теплоизоляционных целях. Как известно, лучше всего сохраняет тепло воздух, а его в этом материале предостаточно. Коэффициент теплоотдачи утеплителя из вспененного полиэтилена составляет всего 0,036 Вт/м2 * 0C (для сравнения теплопроводность железобетона – около 1,69, гипсокартона – 0,15, дерева – 0,09, минеральной ваты – 0,07 Вт/м2 * 0C)

Коэффициент теплоотдачи утеплителя из вспененного полиэтилена составляет всего 0,036 Вт/м2 * 0C (для сравнения теплопроводность железобетона – около 1,69, гипсокартона – 0,15, дерева – 0,09, минеральной ваты – 0,07 Вт/м2 * 0C).

ИНТЕРЕСНО! Теплоизоляция из вспененного полиэтилена слоем толщиной 10 мм способна заменить 150-тимиллиметровую толщину кирпичной кладки.

Область применения

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

  • Для уменьшения теплопередачи путем конвекции и теплового излучения от стен, полов и кровель,
  • В качестве отражающей изоляции для увеличения теплоотдачи отопительных систем,
  • Для защиты трубных систем и магистралей разного назначения,
  • В виде утепляющей прокладки для различных щелей и проемов,
  • Для изолирования вентиляционных и кондиционирующих систем.

Кроме этого, пенополиэтилен используется как упаковочный материал для транспортировки продукции, требующей тепловой и механической защиты.

Вреден ли вспененный полиэтилен?

Сторонники использования в строительстве натуральных материалов могут говорить о вредности химически синтезированных веществ. Действительно, при нагревании выше 120 0C вспененный полиэтилен превращается в жидкую массу, которая может быть токсичной. Но в стандартных бытовых условиях он абсолютно безвреден. Более того, утеплительные материалы из пенополиэтилена по большинству показателей превосходят дерево, железо и камень Строительные конструкции с их применением обладают легкостью, теплом и низкой себестоимостью.

Если объяснять на пальцах

Для наглядности и понимания, что такое теплопроводность, можно сравнить кирпичную стену, толщиной 2 м 10 см с другими материалами. Таким образом, 2,1 метра кирпича, сложенного в стену на обычном цементно-песчаном растворе равны:

  • стене толщиной 0,9 м из керамзитобетона;
  • брусу, диаметром 0,53 м;
  • стене, толщиной 0,44 м из газобетона.

Если речь заходит от таких распространённых утеплителях, как минеральная вата и пенополистирол, то потребуется всего 0,18 м первой теплоизоляции или 0,12 м второй, чтобы значения теплопроводности огромной кирпичной стены оказались равными тонюсенькому слою теплоизоляции.

Сравнительная характеристика теплопроводности утеплительных, строительных и отделочных материалов, которую можно произвести, изучив СНиПы, позволяет проанализировать и правильно составить утеплительный пирог (основание, утеплитель, финишная отделка). Чем ниже теплопроводность, тем выше цена. Ярким примером могут послужить стены дома, сложенные из керамических блоков или обычного высококачественного кирпича. Первые имеют теплопроводность всего 0,14 – 0,18 и стоят намного дороже любого, самого лучшего кирпича.

Разные материалы имеют различную теплопроводность, и чем она ниже, тем меньше теплообмен внутренней среды обитания с внешней. Это значит, что зимой в таком доме сохраняется тепло, а летом – прохлада

Теплопроводность — количественная характеристика способности тел к проведению тепла. Для того чтобы иметь возможность сравнения, а также точных расчетов при строительстве, представляем цифры в таблице теплопроводности, а также прочности, паропроницаемости большинства строительных материалов.

Как определить коэффициенты теплопроводности строительных материалов: таблица

Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:

Необходимые коэффициенты для самых различных материалов

Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.

Технические характеристики утеплителей для бетонных полов

О значении теплопроводности можно судить по сравнительным характеристикам

Полезные рекомендации

Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.

Популярные статьи  Вытяжка для ванной и туалета: тонкости создания проекта и нюансы обустройства системы

Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы

Утепление потолочного перекрытия на верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.

При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции

Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.

Создание теплого пола требует особых знаний

Важно учитывать высоту и толщину материалов. Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления. При этом важно повысить отдачу тепло от радиаторов

Для этого стоит воспользоваться следующими советами:

При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:. Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления

Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления

При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:

  • если какая-то часть батарей холодная, то требуется спустить воздух. При этом открывается специальный клапан;
  • чтобы тепло проникало внутрь дома, на не обогревало стены, рекомендуется установить защитный экран с покрытием из фольги;
  • для свободной циркуляции подогретого воздуха не стоит радиаторы загромождать мебелью или шторами;
  • если снять декоративный экран, то теплоотдача увеличиться на 25 %.

Выбор качественных радиаторов позволяет лучше сберечь тепло в помещении

Тепловые потери через входные двери могут составлять до 10 %. При этом значительное количество тепла тратится на воздушные массы, которые поступают снаружи. Для устранения сквозняков надо переустановить изношенные уплотнители и щели, которые могут появиться между стеной и коробом. В данном случае дверное полотно можно обить, а щели заполнить с помощью монтажной пены.

Выбор утеплителя зависит от материала самой двери

Одним из основных источников теплопотерь являются окна. Если рамы старые, то появляются сквозняки. Через оконные проемы теряется около 35% тепловой энергии. Для качественного утепления применяются двухкамерные стеклопакеты. К другим способам относится утепление щелей монтажной пеной, оклейка мест стыков с рамой специальным уплотнителем и нанесение силиконового герметика. Правильное и комплексное утепление является гарантией комфортного и теплого дома, в котором не появиться плесень, сквозняки и холодный пол.

Экономьте время: отборные статьи каждую неделю по почте

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность

Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.

Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.

Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором. Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором
Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов. Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью
Влажность – злокачественный фактор, повышающий скорость прохождения тепла

Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.

«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

  • соответствовать расчётным нормам строительства и энергосбережения;
  • оставлять размеры ограждающих конструкций в пределах разумного;
  • уменьшить материальные затраты на строительство объекта и его обслуживание;
  • добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Популярные статьи  Как клеить жидкие обои на стену и на потолок: пошаговая инструкция и фото

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

Показатель Бетоны, растворно-бетонные смеси
Железобетон Цементно-песчаный раствор Сложный раствор (цементно-известково-песчаный) Известково-песчаный раствор
плотность, кг/куб.м 2500 1800 1700 1600
коэффициент теплопроводности, Вт/(м•°С) 2,04 0,93 0,87 0,81
толщина стен, м 6,53 2,98 2,78 2,59

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

Показатель Конструкционно-теплоизоляционные м-лы
Пемзобетон Керамзитобетон Полистиролбетон Пено- и газобетон (пено- и газосиликат) Кирпич глиняный Силикатный кирпич
плотность, кг/куб.м 800 800 600 400 1800 1800
коэффициент теплопроводности, Вт/(м•°С) 0,68 0,326 0,2 0,11 0,81 0,87
толщина стен, м 2,176 1,04 0,64 0,35 2,59 2,78

Таблица 3.2

Показатель Конструкционно-теплоизоляционные м-лы
Кирпич шлаковый Силикатный кирпич 11-типустотный Кирпич силикатный 14-типустотный Сосна (поперечное расположение волокон) Сосна (продольное расположение волокон) Фанера клеёная
плотность, кг/куб.м 1500 1500 1400 500 500 600
коэффициент теплопроводности, Вт/(м•°С) 0,7 0,81 0,76 0,18 0,35 0,18
толщина стен, м 2,24 2,59 2,43 0,58 1,12 0,58

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

Показатель Теплоизоляционные м-лы
ППТ ПТ полистиролбетонные Маты минераловатные Плиты теплоизоляционные (ПТ) из минеральной ваты ДВП (ДСП) Пакля Листы гипсовые (сухая штукатурка)
плотность, кг/куб.м 35 300 1000 190 200 150 1050
коэффициент теплопро- водности, Вт/(м•°С) 0,39 0,1 0,29 0,045 0,07 0,192 1,088
толщина стен, м 0,12 0,32 0,928 0,14 0,224 0,224 1,152

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

  • теплоизоляции фасадов;
  • общестроительной изоляции;
  • изоляционных материалов при устройстве кровли;
  • технической изоляции.

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Теплотехнический расчет стен из различных материалов

Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор.

Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является «теплота» материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа

Второе становится особенно актуальным при отсутствии подведенного к дому газа

Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.

Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).

По существующим нормам (СП 50.13330.2012 Тепловая защита зданий.

Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного, допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.

В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.

Расчет необходимой толщины однослойной стены

В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.

Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт).

Допустимая — минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).

№ п/п Материал стены Теплопроводность, Вт/м·°C Толщина стены, мм
Требуемая Допустимая
1 Газобетонный блок 0,14 444 270
2 Керамзитобетонный блок 0,55 1745 1062
3 Керамический блок 0,16 508 309
4 Керамический блок (тёплый) 0,12 381 232
5 Кирпич (силикатный) 0,70 2221 1352

Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.

Расчет сопротивления теплопередачи стены

Ниже представлены значения сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен из газобетона, керамзитобетона, керамических блоков, кирпича, с отделкой штукатуркой и облицовочным кирпичом, утеплением и без. По цветной полосе можно сравнить между собой эти варианты. Полоса зеленого цвета означает, что стена соответствует нормативным требованиям по теплозащите, желтого — стена соответствует допустимым требованиям, красного — стена не соответствует требованиям

Стена из газобетонного блока

1 Газобетонный блок D600 (400 мм) 2,89 Вт/м·°C
2 Газобетонный блок D600 (300 мм) + утеплитель (100 мм) 4,59 Вт/м·°C
3 Газобетонный блок D600 (400 мм) + утеплитель (100 мм) 5,26 Вт/м·°C
4 Газобетонный блок D600 (300 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,20 Вт/м·°C
5 Газобетонный блок D600 (400 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,88 Вт/м·°C

Стена из керамзитобетонного блока

1 Керамзитобетонный блок (400 мм) + утеплитель (100 мм) 3,24 Вт/м·°C
2 Керамзитобетонный блок (400 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 1,38 Вт/м·°C
3 Керамзитобетонный блок (400 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 3,21 Вт/м·°C

Стена из керамического блока

1 Керамический блок (510 мм) 3,20 Вт/м·°C
2 Керамический блок тёплый (380 мм) 3,18 Вт/м·°C
3 Керамический блок (510 мм) + утеплитель (100 мм) 4,81 Вт/м·°C
4 Керамический блок (380 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 2,62 Вт/м·°C

Стена из силикатного кирпича

1 Кирпич (380 мм) + утеплитель (100 мм) 3,07 Вт/м·°C
2 Кирпич (510 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 1,38 Вт/м·°C
3 Кирпич (380 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) 3,05 Вт/м·°C

Приложение А (обязательное)

Таблица А.1

Материалы (конструкции)

Эксплуатационная влажность материалов w, % по массе, при условиях эксплуатации

А

Б

1 Пенополистирол

2

10

2 Пенополистирол экструзионный

2

3

3 Пенополиуретан

2

5

4 Плиты из резольно-фенолформальдегидного пенопласта

5

20

5 Перлитопластбетон

2

3

6 Теплоизоляционные изделия из вспененного синтетического каучука «Аэрофлекс»

5

15

7 Теплоизоляционные изделия из вспененного синтетического каучука «Кфлекс»

8 Маты и плиты из минеральной ваты (на основе каменного волокна и штапельного стекловолокна)

2

5

9 Пеностекло или газостекло

1

2

10 Плиты древесно-волокнистые и древесно-стружечные

10

12

11 Плиты фибролитовые и арболит на портландцементе

10

15

12 Плиты камышитовые

10

15

13 Плиты торфяные теплоизоляционные

15

20

14 Пакля

7

12

15 Плиты на основе гипса

4

6

16 Листы гипсовые обшивочные (сухая штукатурка)

4

6

17 Изделия из вспученного перлита на битумном связующем

1

2

18 Гравий керамзитовый

2

3

19 Гравий шунгизитовый

2

4

20 Щебень из доменного шлака

2

3

21 Щебень шлакопемзовый и аглопоритовый

2

3

22 Щебень и песок из вспученного перлита

5

10

23 Вермикулит вспученный

1

3

24 Песок для строительных работ

1

2

25 Цементно-шлаковый раствор

2

4

26 Цементно-перлитовый раствор

7

12

27 Гипсоперлитовый раствор

10

15

28 Поризованный гипсоперлитовый раствор

6

10

29 Туфобетон

7

10

30 Пемзобетон

4

6

31 Бетон на вулканическом шлаке

7

10

32 Керамзитобетон на керамзитовом песке и керамзитопенобетон

5

10

33 Керамзитобетон на кварцевом песке с поризацией

4

8

34 Керамзитобетон на перлитовом песке

9

13

35 Шунгизитобетон

4

7

36 Перлитобетон

10

15

37 Шлакопемзобетон (термозитобетон)

5

8

38 Шлакопемзопено- и шлакопемзогазобетон

8

11

39 Бетон на доменных гранулированных шлаках

5

8

40 Аглопоритобетон и бетон на топливных (котельных) шлаках

5

8

41 Бетон на зольном гравии

5

8

42 Вермикулитобетон

8

13

43 Полистиролбетон

4

8

44 Газо- и пенобетон, газо- и пеносиликат

8

12

45 Газо- и пенозолобетон

15

22

46 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-песчаном растворе

1

2

47 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-шлаковом растворе

1,5

3

48 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-перлитовом растворе

2

4

49 Кирпичная кладка из сплошного кирпича силикатного на цементно-песчаном растворе

2

4

50 Кирпичная кладка из сплошного кирпича трепельного на цементно-песчаном растворе

2

4

51 Кирпичная кладка из сплошного кирпича шлакового на цементно-песчаном растворе

1,5

3

52 Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг м3 (брутто) на цементно-песчаном растворе

1

2

53 Кирпичная кладка из пустотного кирпича силикатного на цементно-песчаном растворе

2

4

54 Древесина

15

20

55 Фанера клееная

10

13

56 Картон облицовочный

5

10

57 Картон строительный многослойный

6

12

58 Железобетон

2

3

59 Бетон на гравии или щебне из природного камня

2

3

60 Раствор цементно-песчаный

2

4

61 Раствор сложный (песок, известь, цемент)

2

4

62 Раствор известково-песчаный

2

4

63 Гранит, гнейс и базальт

64 Мрамор

65 Известняк

2

3

66 Туф

3

5

67 Листы асбестоцементные плоские

2

3

Популярные статьи  Как обжать интернет кабель в домашних условиях: используем схему

Ключевые слова: строительные материалы и изделия, теплофизические характеристики, расчетные значения, теплопроводность, паропроницаемость

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это  способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем «абстрактный дом». В «абстрактном доме» стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен  постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

Практическое применение значения теплопроводности строительных материалов

Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление нормируемая величина.

Упрощенная формула, определяющая толщину слоя, будет иметь вид:

Таблица теплопроводности утеплителей.

где, H толщина слоя, м,

R сопротивление теплопередаче, (м2*°С)/Вт,

λ коэффициент теплопроводности, Вт/(м*°С).

Данная формула применительно к стене или перекрытию имеет следующие допущения:

  • ограждающая конструкция имеет однородное монолитное строение,
  • используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

  • СНиП23-01-99 Строительная климатология,
  • СНиП 23-02-2003 Тепловая защита зданий,
  • СП 23-101-2004 Проектирование тепловой защиты зданий.

Теплопроводность: понятие и теория

Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Потери тепла на разных участках постройки будут отличаться

Коэффициенты теплопередачи сталей

Способность передавать тепло для сталей зависит от двух главных факторов: состава и температуры.

Простые углеродные стали при увеличении содержания углерода снижают свой удельный вес, в соответствии с которым также уменьшается и их способность переносить тепло от 54 до 36 Вт/(м*К) при изменении процента углерода в стали от 0,5 до 1,5%.

Нержавеющие стали содержат в своем составе хром (10% и больше), которые вместе с углеродом образует сложные карбиды, препятствующие окислению материала, а также повышает электродный потенциал металла. Теплопроводность нержавейки невелика в сравнении с другими сталями и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава. Жаропрочные хромоникелевые стали обладают еще более низкими значениями этого коэффициента (11—19 Вт/(м*К).

Другим классом являются оцинкованные стали с удельным весом 7 850 кг/м3, которые получают путем нанесения покрытий на сталь, состоящих из железа и цинка. Так как цинк легче проводит тепло, чем железо, то и теплопроводность оцинкованной стали будет относительно высокой в сравнении с другими классами стали. Она колеблется от 47 до 58 Вт/(м*К).

Теплопроводность стали при различных температурах, как правило, не изменяется сильно. Например, коэффициент теплопроводности стали 20 при увеличении температуры от комнатной до 1200 °C снижается от 86 до 30 Вт/(м*К), а для марки стали 08Х13 увеличение температуры от 100 до 900 °C не изменяет ее коэффициент теплопроводности (27—28 Вт/(м*К).

Использование значений теплопроводности на практике

Материалы, используемые в строительстве, могут быть конструкционными и теплоизолирующими.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Существует огромное количество материалов с теплоизолирующими свойствами

Самое большое значение теплопроводности у конструкционных материалов, которые используются при возведении перекрытий, стен и потолков. Если не использовать сырье с теплоизолирующими свойствами, то для сохранения тепла потребуется монтаж толстого слоя утеплителя для возведения стен.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

Часто для утепления строений используются более простые материалы

Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов,  таблица показывает все значения.

Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений

В некоторых случаях более эффективным считается утепление снаружи

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: