Принцип действия, обозначение на схеме, варианты применения
Внешне варистор очень похож на конденсатор, но его внутреннее устройство, как видно из рисунка 3, совершенное иное.
Рисунок 3. Конструкция варистора (1) и его обозначение на схемах (2)
Обозначения:
- А – два металлических электрода в форме диска;
- В – вкрапления оксида цинка (размер кристаллов не соблюден);
- С – оболочка полупроводника, сделанная на основе синтетических отвердителей (эпоксидов);
- D – керамический изолятор;
- Е – выводы.
Помимо конструкции, на рисунке 3 показано обозначение элемента на принципиальных схемах (2).
Содержание оксида цинка в керамическом изоляционном слое определяет порог срабатывания варистора, как только напряжение станет выше допустимого, сопротивление резко снижается и проходящий через полупроводник ток увеличивается. Вырабатывающаяся в результате этого процесса тепловая энергия рассеивается в воздухе.
Такой принцип действия позволяет не допустить выход из строя электронных устройств при краткосрочном перепаде напряжения. Длительный импульс вызовет перегрев и разрушение варистора, но на этот процесс требуется время. Хоть оно исчисляется долями секунды, в большинстве случаев, этого достаточно для срабатывания плавкого предохранителя.
Именно поэтому после замены предохранителя необходимо проверять варистор (внешний осмотр и тестирование мультиметром). В противном случае, следующий перепад напряжения, с большой долей вероятности, приведет к разрушению компонентов электронного устройства.
Визуальный контроль конденсаторов
Неисправности возникают из-за механических повреждений, перегрева, скачков напряжения и др. Чаще всего наблюдается выход из строя конденсатора по причине пробоя. Его можно увидеть по следующим дефектам: потемнению, вздутию или трещинам. У отечественных деталей при вздутии может произойти небольшой взрыв. Зарубежные конденсаторы защищены от него крестовидной прорезью на торце детали, где происходит небольшое вздутие, различимое глазом. Деталь с данной неисправностью может иметь нормальный вид, но при этом быть неработоспособной.
Для проверки элемент выпаивается из платы, иначе протестировать его невозможно. Проверку можно сделать по карте сопротивлений на плате, но для конкретной модели она не всегда имеется под рукой, даже при сервисном обслуживании.
Характеристики
Как элемент электрической цепи, конденсатор имеет такие параметры:
- Электрическая емкость, которая характеризуется свойством накапливания электрического заряда.
- Номинальное напряжение. Значение напряжения на обкладках, при котором элемент в течении срока службы сохраняет свои параметры.
При работе с электрическими цепями необходимо учитывать паразитные параметры, которые являются нежелательными:
- Ток утечки, который появляется из-за несовершенства диэлектрика, качества изоляции обкладок.
- Последовательное эквивалентное сопротивление, которое складывается из сопротивления выводов, сопротивление контакта вывод-обкладка, внутренних свойств диэлектрика.
- Эквивалентная индуктивность, в которую входят индуктивность выводов и обкладок.
- Тангенс угла диэлектрических потерь, характеризующий электрические потери в конденсаторе на высоких частотах.
- Температурный коэффициент емкости, показывающий, как она меняется в зависимости от температуры.
- Паразитный пьезоэффект, проявляющийся как генерация напряжения при физическом воздействии на диэлектрик (тряска, вибрация).
Эквивалентная схема
Определение рабочего напряжения конденсатора
Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.
Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть «на глазок» рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.
Способ №1: определение рабочего напряжения через напряжения пробоя
Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.
Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.
Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).
За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое… Вы можете иметь свое мнение на этот счет.
Внимание! Обязательно соблюдайте все меры предосторожности! При проверке конденсатора на пробой необходимо использовать защищенный стенд, а также индивидуальные средства защиты зрения. Энергии заряженного конденсатора бывает достаточно, чтобы устроить небольшой ядерный взрыв прямо на рабочем столе. Вот, можно посмотреть, как это бывает:
Вот, можно посмотреть, как это бывает:
Энергии заряженного конденсатора бывает достаточно, чтобы устроить небольшой ядерный взрыв прямо на рабочем столе. Вот, можно посмотреть, как это бывает:
А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).
Способ №2: нахождение рабочего напряжения конденсатора через ток утечки
Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.
Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:
и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.
У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):
Напряжение на конденсаторе, В | Ток утечки, мкА | Прирост тока, мкА |
10 | 1.1 | 1.1 |
20 | 2.2 | 1.1 |
30 | 3.3 | 1.1 |
40 | 4.5 | 1.2 |
50 | 5.8 | 1.3 |
60 | 7.2 | 1.4 |
70 | 8.9 | 1.7 |
80 | 11.0 | 2.1 |
90 | 13.4 | 2.4 |
100 | 16.0 | 2.6 |
Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.
Если из полученных значений построить график, то он будет иметь следующий вид:
Видно, что начиная с 50-60 вольт, график зависимости тока утечки от напряжения обретает явно выраженную нелинейность
А если принять во внимание стандартный ряд напряжений:
Стандартный ряд номинальных рабочих напряжений конденсаторов, В | |||||||||||||||||||
6.3 | 10 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 | 250 | 315 | 350 | 400 | 450 | 500 |
то можно предположить, что для данного конденсатора рабочее напряжение составляет либо 50 либо 63 В.
Согласен, метод достаточно трудоемкий, но не сказать о нем было бы ошибкой.
Ход проверки
Для начала следует провести внешний осмотр радиоэлемента, не выпаивая его из платы. О неисправности или выходе из строя могут говорить вздутие корпуса, изменение его окраски, признаки температурного воздействия (потемнение платы, дорожки отходят от поверхности и т.п.). Если электролитический раствор протекает наружу, снизу в месте крепления к плате должны остаться характерные подтеки
Для проверки фиксации на плате можно осторожно взять элемент и несильно покачать из стороны в сторону. Если одна из ножек оборвана, это сразу будет понятно по свободному ходу
Взорвавшиеся на плате конденсаторы и сработавший «защитный надрез»
Закоротим выводы и попробуем прозвонить элемент тестером. Если прибор показывает минимальное сопротивление, конденсатор исправен и начал заряжаться постоянным током. Во время этого процесса показатель сопротивления будет расти до предельного значения или бесконечности. Поведение показателей имеет значение – стрелка аналогового тестера должна перемещаться медленно без скачков. О том, что работоспособность нарушена, говорят следующие факторы:
- При подключении клемм, тестер сразу показывает бесконечность. Это говорит об обрыве в конденсаторе.
- Мультиметр показывает на ноль и издает звуковой сигнал – значит произошло короткое замыкание или пробой.
В обоих случаях исправность элементов уже не восстановить и их следует выбросить.
Для того чтобы проверить, работает ли неполярный конденсатор, необходимо выбрать на мультиметре предел для измерения в мегаомах и прикоснуться контактами прибора к выводам – исправный элемент не показывает сопротивлния выше 2 мОм. Стоит помнить, что проверка элемента мультиметром на короткое замыкание, не поддерживается большинством современных приборов, если номинальный заряд радиоэлемента ниже 0,25 мкФ.
Как сделать прибор для проверки конденсаторов своими руками
Провести измерение емкости можно с помощью несложного прибора. Для него необходимы следующие детали:
- источник постоянного тока;
- резистор;
- конденсатор;
- вольтметр.
Эта схема подойдет для проверки электролитических конденсаторов. Нужно выбрать входное напряжение таким, чтобы оно было немного меньше по сравнению с номинальным напряжением конденсатора. Один из выводов конденсатора к источнику питания подсоединяют через резистор. Вольтметр присоединяют к выводам конденсатора.
Схема проверки
После подключения измерителя начинается процесс зарядки конденсатора. Нужно засечь время, в течение которого он будет длиться. Величину сопротивления можно подобрать в значительной степени произвольно. При этом нужно ориентироваться на скорость зарядки. Нужно, чтобы она была такой, которую удобно измерять.
При проведении зарядки на вольтметре можно будет увидеть возрастание напряжения. В какой-то момент оно достигнет предельной величины и перестанет расти. Это будет конечный момент отсчета времени. Для вычисления емкости достаточно воспользоваться формулой: t=RC. В ней известно время и величина сопротивления резистора. Емкость можно определить из соотношения C=t/R.
Использование мультиметра
Проверяют конденсатор на наличие пробоя с помощью схемы самоделки — последовательно соединенной с ним лампочки 40 Вт, включенных в обычную сеть переменного тока. Если лампочка светит в половину накала, то деталь исправна. При ярком свете имеется пробой, при отсутствии — повреждены контакты.
Проверка мультиметром
При помощи мультиметра проверяют два параметра конденсатора: внутреннее сопротивление и емкость.
Внутреннее сопротивление (проверка на пробой и обрыв цепи)
Мультиметр переводят в режим измерения сопротивления путем установки переключателя в сектор «Ω» на верхнюю позицию — у разных моделей это 2 или 20 МОм.
Далее касаются щупами выводов конденсатора. Если тот исправен, происходит следующее:
- вначале мультиметр показывает низкое сопротивление — конденсатор заряжается подаваемым на щупы напряжением;
- по мере увеличения заряда в конденсаторе, сопротивление постепенно возрастает и в конце концов достигает очень высокой величины: на дисплее — значение свыше 2 МОм или «1» (символ бесконечности).
Иное поведение прибора свидетельствует о неисправности элемента, когда сопротивление:
- оказалось ниже 2 МОм: конденсатор пробит (появилась проводимость в диэлектрике между обкладками);
- сразу стало бесконечно большим: обрыв вывода.
Конденсаторы делятся на два типа: полярные и неполярные. Первые чувствительны к полярности измерений и если ее перепутать, подав на «минусовый» вывод положительный потенциал, а на «плюсовой» — отрицательный, выходят из строя. «Минусовый» вывод распознают по отметке в виде «птички» на корпусе конденсатора.
В мультиметре потенциалы распределяются так:
- порт «COM» — отрицательный: по негласному правилу сюда включают черный щуп;
- порт «V/ Ω» — положительный: принято включать красный щуп.
При измерении сопротивления неполярного конденсатора полярность можно поменять. Элемент перезаряжается и показания на мультиметре снова возрастают от малых величин до 2 МОм и более.
При наличии заведомо исправного конденсатора той же марки, состояние исследуемого проверяют методом сравнения:
- замеряют сопротивление исправного конденсатора;
- то же самое выполняют для исследуемого элемента;
- сравнивают скорость изменения показаний на мультиметре.
Для этого метода более подходит аналоговый (стрелочный) тестер: плавно отклоняющаяся стрелка четко отражает изменение сопротивления в режиме реального времени.
Конденсатор проверяется в разряженном состоянии, иначе возможна электротравма или повреждение мультиметра.
Способ разряда зависит от емкости:
- малая (низкое напряжение): закорачивают выводы отверткой;
- большая (высокое напряжение): замыкают выводы резистором сопротивлением 10 кОм.
Резистор удерживают инструментом с изолированными ручками.
Емкость
Измерение емкости возможно при наличии в мультиметре специальной функции. У таких приборов на лицевой панели имеется сектор «CX».
Конденсатор подключается двумя способами:
- у некоторых моделей имеются разъемы для щупов с пометкой «CX»;
- у других в сектор «CX» выведены две контактные площадки с пометками «+» и «-».
При контакте щупов или площадок с выводами конденсатора на дисплее отображается значение емкости. Полученные данные сравнивают с числовым показателем, указанным на корпусе конденсатора, после чего делают вывод о его пригодности.
Мультиметр
Переключатель должен быть установлен в секторе «CX» на позиции с ближайшим большим значением по отношению к ожидаемой емкости. Обычно в секторе имеется 5 позиций со данными от 20 нФ до 200 мкФ.
Данный способ контроля не подходит для конденсаторов емкостью менее 0,25 мкФ. Их проверяют специальным устройством — LC-метром.
При отсутствии функции определения емкости, конденсатор проверяют так:
- Заряжают его от источника постоянного тока. Напряжение источника — примерно вдвое меньше напряжения конденсатора. Для элемента на 25 В достаточно источника на 9 – 12 В.
- Выждав несколько секунд, чего обычно достаточно для полной зарядки, радиодеталь отключают от питания и мультиметром замеряют напряжение на ее выводах.
Измеритель настраивается следующим образом:
- черный щуп включен в порт «COM»;
- красный — в порт «V/Ω»;
- переключатель: в сектор измерения постоянного напряжения («DCV» или «V-») на позицию с ближайшим большим значением относительно ожидаемого напряжения конденсатора.
Важно успеть прочитать первые показания, поскольку напряжение постепенно будет снижаться — конденсатор разряжается через мультиметр.
Порядок проверки
Основной тест — это проверка стабилитрона по состоянию его перехода. Для определения напряжения стабилитрона, может быть проведен более полный тест, но для этого требуются некоторые дополнительные устройства в качестве источника БП.
Чтобы диагностировать DZ на работоспособность, мультиметр применяют в режиме замера сопротивления, либо в режиме тестирования диодов. Технология замеров аналогична диодам:
- К выводам DZ приставляют щупы, и проверяют показания на шкале индикации.
- Измерения проводят сначала в прямом направление, прикладывая «+» к катоду, а потом в обратном направлении, прикладывая к аноду DZ.
- В первом случае, прибор определяет бесконечное сопротивление, а во втором — единицы и десятки Ом. Это свидетельствует об исправности DZ.
- Как и в случае с обычным диодом, при прямой поляризации необходимо считывать низкое сопротивление или обрыв цепи.
- При обратной поляризации необходимо считывать высокое сопротивление.
- Диоды с низким сопротивлением или обрывом в обоих тестах закорочены. Диоды с высоким сопротивлением в обоих тестах разомкнуты. Обратное сопротивление между 20 кОм и 200 кОм указывает на поломку, а выше на исправность .
- Когда в результате замеров сопротивления в обоих направлениях достигает бесконечности, это свидетельствует об обрыве PN-перехода.
Это простейший тест, в котором проверяется только состояние PN-перехода. Он показывает, целостный ли компонент или закорочен. Пользователь ничего не сможет узнать о напряжении стабилитрона, рассеивании или других важных характеристиках.
Как проверить стабилитрон, не выпаивая из платы
Можно выполнить частичную проверку стабилитрона мультиметром, не выпаивая из схемы, поскольку он электрически связан с другими компонентами платы. В связи с этим, диагностировать его на пробой в таким состоянии невозможно.
Фактически, можно прозвонить DZ мультиметром на плате только по параметру стабильности напряжения питания. Для этого предварительно нужно знать исходное значение напряжения по его марке. После этого включают тестер и соединяют щупы с выводами стабилитрона. Если в ходе измерений получится напряжение, равное или выше паспортного значения напряжения DZ, то стабилитрон исправен.
Как протестировать двусторонний стабилитрон
В бытовых приборах разного назначения часто используют двухсторонние стабилитроны, которые выполнены из 2-х стабилитронов в одном корпусе, направленных навстречу друг другу.
Такой стабилитрон способен одинаково хорошо функционировать, как с импульсным напряжением, так и с переменной полярностью. Выполнение проверки на пробой у этой модели стабилитрона лишена смысла. По этой причине их можно тестировать исключительно на соответствие напряжения .
Частные случаи прозвонки
В некоторых случаях мультиметр, при испытании рабочего диода Зенера в режиме замера сопротивления при обратной полярности, демонстрирует величину, существенно отличающуюся от ожидаемого показателя. Это происходит в том случае, когда внутренний источник электропитания, больше напряжение стабилизации DZ. Это объясняется тем, что он будет снижать свое внутреннее сопротивление до того времени, пока не будет достигнуто напряжения стабилизации. Этот факт требуется учитывать при выполнении тестирования стабилитронов.
Иногда, при прозвонке тестер демонстрирует значительное сопротивление, как при прямом, так и при обратном потенциале. Это может случаться, когда применяется двуханодная конструкция стабилитрона, для которого показатель полярности не имеет существенного значения. Для того, чтобы проверить такой стабилитрон, напряжение должно быть выше стабилизирующего. Одновременно потребуется поменять полярность. Измеряя токи, протекающие через DZ и сопоставляя VA-характеристики тестируемого, определяют его работоспособность.
Измерение емкости в режиме сопротивления
Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.
Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.
Измерение в режиме сопротивления
Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.
Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.
Аналоговое устройство
Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.
Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением
Маркировка на конденсаторах
Знать характеристики электронных приборов требуется для точной и безопасной работы.
Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).
На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.
Номинальная емкость кодируется по стандартам IEC — Международной электротехнической комиссии, которая объединяет национальные организации по стандартам 60 стран.
Стандарт IEC использует обозначения:
- Кодировка из 3 цифр. 2 знака в начале — количество пФ, третий — число нулей, 9 в конце — номинал меньше 10 пФ, 0 спереди — не больше 1 пФ. Код 689 — 6,8 пФ, 152 — 1500 пФ, 333 — 33000 пФ или 33 нФ, или 0,033 мкФ. Для облегчения чтения десятичная запятая в коде заменяется буквой «R». R8=0,8 пФ, 2R5 — 2,5 пФ.
- 4 цифры в маркировке. Последняя — число нулей. 3 первых — величина в пФ. 3353 — 335000 пФ, 335 нФ или 0,335 мкФ.
- Использование букв в коде. Буква µ — мкФ, n — нанофарад, p — пФ. 34p5 — 34,5 пФ, 1µ5 — 1,5 мкФ.
- Планерные керамические изделия кодируют буквами A-Z в 2 регистрах и цифрой, обозначающей степень числа 10. K3 — 2400 пФ.
- Электролитические SMD приборы маркируются 2 способами: цифры — номинальная емкость в пФ и рядом или во 2 строчке при наличии места — значение номинального напряжения; буква, кодирующая напряжение и рядом 3 цифры, 2 определяют емкость, а последняя — количество нулей. А205 значит 10 В и 2 мкФ.
- Изделия для поверхностного монтажа маркируются кодом из букв и чисел: СА7 — 10 мкФ и 16 В.
- Кодировки — цветом корпуса.
Маркировка IEC, национальные обозначения и кодировки брендов делают запоминание кодов бессмысленным. Разработчикам аппаратуры и мастерам-ремонтникам требуются справочные источники.
Принцип действия
Конденсаторы представляют собой устройство, состоящие из двух пластин со свойством электрической проводимости.
Пластины не контактируют друг с другом. Между ними есть пространство, которое может быть заполнено кислородом или любым диэлектрическим веществом.
Основной величиной является емкость, ее измеряют в фарадах. Значение вычисляется при способности конденсатора к накоплению количества энергии равному 1 кулону, при показателе разниц напряжения 1 вольт между 2 пластинами. Величина 1 кулон очень большая. Емкости современных устройств варьируются от миллифарад до пикофарад.
Емкость этих элементов понижается или повышается за счет величины пластин и диэлектрического расстояния между ними. При увеличении высоты и ширины пластин, снижают ширину диэлектрика, что способствует увеличению емкости.
Конденсатор работает по следующему принципу:
- Переменное напряжение заряжает токопроводящие пластины устройства.
- На этих пластинах происходит смена потенциалов.
- При снижении напряжения в цепи, конденсатор отдает часть недостающей энергии, стимулируя выравнивание напряжения.
При работе под нагрузкой постоянного напряжения, на пластинах не происходит смены потенциала. Ток выдается импульсными разрядами, согласно установленной полярности. Далее будет дано подробное описание разновидностей конденсаторов и сфер их использования.
Устройство и характеристики конденсатора
Конструкция конденсатора представляет собой две токопроводящие пластины, разделённые диэлектриком. Если приложить к пластинам напряжение от источника постоянного тока, то ток короткое время будет протекать через конденсатор, и он зарядится. На его пластинах (обкладках) накопится напряжение, равное напряжению источника. Длительность протекания тока и ёмкость его заряда зависят от площади обкладок и расстояния между ними. Ёмкость обозначается буквой С и измеряется в фарадах. Единица измерения в системе СИ – 1Ф (F). Обозначение принято в честь физика из Англии М. Фарадея.
Внимание! Ёмкость 1Ф – очень большая величина. Если рассматривать Землю как уединённый проводник в форме шара, то ёмкость составила бы около 700 мкФ
Поэтому электротехнические элементы измеряют в малых величинах: пикофарадах (пФ), нанофарадах (нФ), микрофарадах (мкФ).
Единицы измерения ёмкости
В цепях постоянного и переменного тока ёмкостной элемент ведёт себя по-разному. Если постоянный ток конденсатор через себя не пропускает, то переменному току, проходящему через него, оказывает определённое сопротивление. Это ещё одна важная характеристика конденсатора – ёмкостное сопротивление RC.
Сопротивление из разряда реактивных сопротивлений, рассчитывается по формуле:
Rс =1/6,28*f*C,
где:
- Rc – емкостное сопротивление, Ом;
- 6,28 – 2 π;
- f – частота тока, Гц;
- C – емкость данного конденсатора, Ф.
Важно! Как видно из формулы, для токов разной частоты сопротивление одного и того же элемента меняется. Чем выше частота тока, тем ниже ёмкостное сопротивление конденсатора
Различают конденсаторы постоянной и переменной ёмкости. Вторые имеют конструкцию, в результате которой изменяется расстояние между пластинами.
По типу исполнения конденсаторы постоянной ёмкости бывают:
- полярные электролитические;
- однослойные и многослойные керамические;
- высоковольтные керамические;
- полиэстеровые;
- танталовые;
- полипропиленовые конденсаторы.
Конструкция зависит от порядкового разряда ёмкости элемента, применяемого материала для пластин и диэлектрика.
Проверка конденсаторов
Как обнаружить неисправность по внешним характеристикам? Конечно, только лишь по внешним признакам невозможно достоверно судить о работоспособности какого-либо элемента. Тем не менее, таким путем можно заподозрить неисправность, опираясь на признаки:
- отверстия на основании и вытекание электролита, из-за чего конденсатор теряет герметичность;
- нехарактерная, раздутая форма корпуса и множество выступающих бугорков (в нормальном состоянии они имеют форму цилиндра).
Внешняя проверка особенно необходима в том случае, если вы устанавливаете в схему уже использованные конденсаторы. Тем не менее, некоторый процент брака можно обнаружить и среди новых элементов.
Если вы приобрели новый конденсатор, на котором уже имеются дефекты, то его не стоит использовать, ведь со временем это может привести к нарушению целостности всей схемы. Будет разумно приобрести и подсоединить другой элемент.
Повреждения в виде пробоев в основном встречаются на неполярных элементах или на некоторых полярных с высокой чувствительностью к высокому напряжению.
Для того, чтобы предупредить повреждение других частей электросхемы после разрыва конденсатора, производителями была предусмотрена слабая верхняя крышка, на которой располагаются небольшие разрезы. Таким способом создается «слабое» место корпусной части. Это значит, что в случае разрыва электролит вытекает сверху, не затрагивая элементы схемы.
Вздутый конденсатор потребуется немедленно утилизировать, иначе через некоторое время все равно произойдет взрыв (как показано на изображении ниже).
Если у конденсатора начинает вздуваться верхняя часть, то уже не стоит проверять его дополнительными способами. Лучшим решением будет приобретение нового элемента.
Обратить внимание следует и на другой немаловажный признак. Так, у некоторых элементов «слабая» крышка остается целой без каких-либо дефектов, но их можно заметить на нижней части – пробка становится выпуклой
Конечно, такая проблема возникает в редких случаях, но все-таки некоторым пользователям приходится с ней сталкиваться. Даже если причиной такой проблемы является брак, все равно конденсатор рекомендуется утилизировать.
Стоит отметить, что даже при наличии внешних дефектов на корпусе, компонент может соответствовать требованиям после проверки прибором. Тем не менее, использовать его будет опасно.
В другом же случае, когда внешние повреждения отсутствуют, но имеются подозрения плохой функциональности конденсатора, из-за общего падения работоспособности радиосхемы, его понадобится проверить другими методами, поэтому сначала дефективный элемент выпаивают из общей схемы.
Многие «умельцы» склонным к мнению, что проверить компонент можно и без выпаивания. Конечно, такой способ тестирования возможен, но он не гарантирует точных результатов, поэтому конденсаторы желательно демонтировать.
Диагностика неисправностей неполярных конденсаторов
У неполярного конденсатора замеряется сопротивление. Если оно имеет величину меньше 2 мОм, здесь налицо неисправность (утечка или пробой). Исправная деталь обычно показывает сопротивление более 2 мОм или бесконечность. При замерах нельзя касаться щупов руками, поскольку будет измеряться сопротивление тела.
Тестирование на пробой также можно проводить в режиме проверки диодов.
Обрыв у конденсаторов малой емкости косвенным методом обнаружить невозможно. Как проверить емкость конденсатора мультиметром в подобной ситуации? Здесь нужен прибор, где есть необходимая функция.
Подробнее про мультиметр
Это компактный прибор, позволяющий делать замеры основных параметров как электрической цепи, так и отдельных его элементов для тестирования и выявления неисправностей.
Существуют 2 типа:
Аналоговый
Состоит из следующих элементов:
- Стрелочного магнитоэлектрического индикатора.
- Добавочных резисторов для снятия показаний напряжения,
- Шунтов для измерения тока.
Цифровой
Более сложный и точный прибор (наиболее распространены мультиметры с точностью 1%), состоящий из набора микросхем и цифрового индикатора, который бывает в основном жидкокристаллическим.
Некоторые из замеряемых мультиметром характеристик:
- Напряжение (переменного и постоянного тока).
- Сила тока (переменного и постоянного).
- Сопротивление (со звуковым сигналом, если оно менее 50 Ом).
- Ёмкость.
- Проверка полупроводников на целостность и полярность.
- Температура.
Определение рабочего напряжения конденсатора
Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.
Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть «на глазок» рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.
Способ №1: определение рабочего напряжения через напряжения пробоя
Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.
Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.
Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).
За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое. Вы можете иметь свое мнение на этот счет.
А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).
Способ №2: нахождение рабочего напряжения конденсатора через ток утечки
Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.
Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:
и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.
У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):
Напряжение на конденсаторе, В | Ток утечки, мкА | Прирост тока, мкА |
10 | 1.1 | 1.1 |
20 | 2.2 | 1.1 |
30 | 3.3 | 1.1 |
40 | 4.5 | 1.2 |
50 | 5.8 | 1.3 |
60 | 7.2 | 1.4 |
70 | 8.9 | 1.7 |
80 | 11.0 | 2.1 |
90 | 13.4 | 2.4 |
100 | 16.0 | 2.6 |
Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.
Вывод
Среди многих начинающих мастеров-радиолюбителей бытует мнение, что можно прозвонить конденсатор мультиметром не выпаивая его, но мало кто знает, что такие измерения имеют очень большую погрешность. Единственным наиболее правильным методом проверки элемента является визуальная оценка его состояния, на наличие потемнения, взбухания и других дефектов.
Примечательно, что поломка такого характера зачастую происходит в стиральных машинах, телевизорах, микроволновых печах и других видах бытовой техники. В связи с этим, столкнувшись с подобной проблемой вы самостоятельно сможете прозвонить конденсаторы мультиметром, благодаря описанной выше инструкции.