Расчет воздушного отопления: основные принципы + пример расчета

Расчет системы воздушного отопления — простая методика

Проектирование воздушного отопления не простая задача. Для ее решения необходимо выяснить ряд факторов, самостоятельное определение которых может быть затруднено. Специалисты компании РСВ могут бесплатно сделать для вас предварительный проект по воздушному отоплению помещения на основе оборудования ГРЕЕРС.

Система воздушного отопления, как и любая другая, не может быть создана наобум. Для обеспечения медицинской нормы температуры и свежего воздуха в помещении потребуется комплект оборудования, выбор которого основывается на точном расчете. Существует несколько методик расчета воздушного отопления, разной степени сложности и точности. Обычная проблема расчетов такого типа состоит в отсутствии учета влияния тонких эффектов, предусмотреть которые не всегда имеется возможность

Поэтому производить самостоятельный расчет, не будучи специалистом в сфере отопления и вентиляции, чревато появлением ошибок или просчетов. Тем не менее, можно выбрать наиболее доступный способ, основанный на выборе мощности системы обогрева.

Формула определения теплопотерь:

Q=S*T/R

Где:

  • Q — величина теплопотерь (вт)
  • S — площадь всех конструкций здания (помещения)
  • T — разница внутренней и внешней температур
  • R — тепловое сопротивление ограждающих конструкций

Пример:

Здание площадью 800 м2 (20×40 м), высотой 5 м, имеется 10 окон размером 1,5×2 м. Находим площадь конструкций: 800 + 800 = 1600 м2 (площадь пола и потолка) 1,5 × 2 × 10 = 30 м2 (площадь окон) (20 + 40) × 2 × 5 = 600 м2 (площадь стен). Вычитаем отсюда площадь окон, получаем «чистую» площадь стен 570 м2

В таблицах СНиП находим тепловое сопротивление бетонных стен, перекрытия и пола и окон. Можно определить его самостоятельно по формуле:

Где:

  • R — тепловое сопротивление
  • D — толщина материала
  • K — коэффициент теплопроводности

Для простоты примем толщину стен и пола с потолком одинаковой, равной 20 см. Тогда тепловое сопротивление будет равно 0,2 м / 1,3= 0,15 (м2*К)/Вт Тепловое сопротивление окон выберем из таблиц: R = 0,4 (м2*К)/Вт Разницу температур примем за 20°С (20°С внутри и 0°С снаружи).

Тогда для стен получаем

  • 2150 м2 × 20°С / 0,15 = 286666=286 кВт
  • Для окон: 30 м2 × 20°С/ 0,4 = 1500=1,5 кВт.
  • Суммарные теплопотери: 286 + 1,5 = 297,5 кВт.

Такова величина теплопотерь, которые необходимо компенсировать при помощи воздушного отопления мощностью около 300 кВт

Примечательно, что при использовании утепления пола и стен теплопотери снижаются как минимум на порядок.

Гидравлический расчёт водоснабжения

Безусловно, “картина” расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.

Расчет воздушного отопления: основные принципы + пример расчета
Реальный объём теплоносителя рекомендуется рассчитывать через суммирование всех полостей в системе отопления. При использовании одноконтурного котла – это оптимальный вариант. При применении двухконтурных котлов в системе отопления необходимо учитывать расходы горячей воды для гигиенических и иных бытовых целей

W=k*P, где

  • W – объём носителя тепла;
  • P – мощность котла отопления;
  • k – коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон – 10-15 л).

W = 13.5*P

Скорость теплоносителя – заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.

  • P – мощность котла;
  • μ – КПД котла;
  • ∆T – разница температур между подаваемой водой и водой обратном контуре.

Используя вышеизложенные способы гидравлического расчёта, удастся получить реальные параметры, которые являются “фундаментом” будущей системы отопления.

Расчет количества вентиляционных решеток

Рассчитывается количество вентрешеток  и скорость воздуха в воздуховоде:

1)Задаемся количеством решеток и выбираем из каталога их размеры

2) Зная их количество и расход воздуха, рассчитываем  количество воздуха  для 1 решетки

3) Рассчитываем скорость выхода воздуха из воздухораспределителя за формулой  V= q /S, где q- количество воздуха на одну решетку, а S- площадь воздухораспределителя. Обязательно необходимо ознакомится с нормативной скоростью вытока, и только после того как рассчитанная скорость будет меньше нормативной можно считать , что количество решеток подобрано правильно.

Расчет системы отопления дома

Расчёт систем отопления частного дома – самое первое, с чего начинается проектирование такой системы. Мы будем говорить с вами о системе воздушного отопления – именно такие системы проектирует и устанавливает наша компания как в частных домах, так и в коммерческих зданиях и производственных помещениях. Отопление воздухом имеет массу преимуществ по сравнению с традиционными системами водяного отопления – более подробно об этом вы можете прочитать здесь.

Расчет системы – калькулятор онлайн

Для чего необходим предварительный расчет отопления в частном доме? Это требуется для выбора правильной мощности необходимого отопительного оборудования, позволяющей реализовать систему отопления, сбалансировано обеспечивающую теплом соответствующие помещения частного дома. Грамотный выбор оборудования и правильный расчёт мощности системы отопления частного дома позволят рационально компенсировать теплопотери от ограждающих конструкций и притока уличного воздуха на нужды вентиляции. Сами формулы для такого расчета достаточно сложны – поэтому мы предлагаем Вам воспользоваться онлайн расчетом (выше), или заполнив анкету (ниже) – в таком случае расчет произведет наш главный инженер, и эта услуга – совершенно бесплатная.

Как рассчитать отопление частного дома?

С чего начинается такой расчет? Во-первых, требуется определить максимальные теплопотери объекта (в нашем случае – это частный загородный дом) при наихудших погодных условиях (такой расчет ведется с учетом самой холодной пятидневки для данного региона). Рассчитывать систему отопления частного дома на коленке не получится – для этого используют специализированные формулы расчета и программы, позволяющие построить расчет на основе исходных данных о конструкции дома (стен, окон, кровли и т.д.). В результате полученных данных выбирается оборудование, полезная мощность которого должна быть больше или равна рассчитанному значению. В ходе расчёта системы отопления выбирается нужная модель канального воздухонагревателя (обычно это газовый воздухонагреватель, хотя мы можем использовать и другие типы обогревателей – водяной, электрический). Затем вычисляется максимальная производительность обогревателя по воздуху – иными словами, какой объем воздуха вентилятор данного оборудования нагнетает в единицу времени. Следует помнить, что производительность оборудования отличается в зависимости от предусмотренного режима его использования: так, например, при кондиционировании производительность больше, чем при отоплении. Поэтому если в перспективе планируется использовать кондиционер, то за исходное значение нужной производительности необходимо принимать расход воздуха именно в этом режиме – если же нет, то достаточно только значения в режиме отопления.

Популярные статьи  Как спрятать газовый счетчик на кухне: нормы и требования + популярные способы маскировки

На следующем этапе расчёт систем воздушного отопления частного дома сводится к правильному определению конфигурации воздухораспределительной системы и расчёту сечений воздуховодов. Для наших систем мы используем бесфланцевые прямоугольные воздуховоды прямоугольного сечения – они просты в сборке, надежны и удобно располагаются в пространстве между конструктивными элементами дома. Поскольку воздушное отопление является низконапорной системой, то при ее построении необходимо учитывать определённые требования, например, минимизировать количество поворотов воздуховода – как магистрального, так и оконечных веток, идущих к решёткам. Статическое сопротивление трассы не должно превышать 100 Па. На основе производительности оборудования и конфигурации воздухораспределительной системы рассчитывается нужное сечение магистрального воздуховода. Количество оконечных веток определяется исходя из количества подающих решёток, необходимых для каждого конкретного помещения дома. В системе воздушного отопления дома обычно используются стандартные подающие решётки размером 250х100 мм с фиксированной пропускной способностью – она вычисляется с учетом минимальной скорости движения воздуха на выходе. Благодаря такой скорости в помещениях дома не ощущается движение воздуха, отсутствуют сквозняки и посторонний шум.

Конечная стоимость отопления частного дома рассчитывается после окончания этапа проектирования на основании спецификации с перечнем устанавливаемого оборудования и элементов системы воздухораспределения, а также дополнительных устройств контроля и автоматики. Чтобы произвести первоначальный расчет стоимости отопления, вы можете воспользоваться анкетой на расчет стоимости системы отопления ниже:

онлайн-калькулятором

Начальные условия примера

Для более конкретного пояснения всех деталей гидравлического просчёта возьмем конкретный пример обычного жилищного помещения. В наличии имеем классическую 2-комнатную квартиру панельного дома, общей площадью 65,54 м2, которая включает две комнаты, кухню, раздельные туалет и ванная, двойной коридор, спаренный балкон.

После сдачи в эксплуатацию получили следующую информацию относительно готовности квартиры. Описываемая квартира включает обработанные шпаклевкой и грунтом стены из монолитных железо-бетонных конструкций, окна из профиля с двух камерными стеклами, тырсо-прессованные межкомнатные двери, керамическая плитка на полу санузла.

Расчет воздушного отопления: основные принципы + пример расчетаТипичный панельный 9-этажный дом на четыре подъезда. На каждом этаже по 3 квартиры: одна 2-комнатная и две 3-комнатных. Квартира расположена на пятом этаже

Кроме того, представленное жильё уже оснащено медной проводкой, распределителями и отдельным щитком, газовой плитой, ванной, умывальником, унитазом, полотенцесушителем, мойкой.

И самое главное в жилых комнатах, ванной и кухне уже имеются алюминиевые отопительные радиаторы. Вопрос относительно труб и котла остаётся открытым.

Простейшие приемы расчета

Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.

Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.

Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:

  оптимальная допустимая оптимальная допустимая, max оптимальная, max допустимая, max
Для холодного времени года
Жилая комната 20÷22 18÷24 (20÷24) 45÷30 60 0.15 0.2
То же, но для жилых комнат в регионах с минимальными температурами от — 31 °С и ниже 21÷23 20÷24 (22÷24) 45÷30 60 0.15 0.2
Кухня 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Туалет 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Ванная, совмещенный санузел 24÷26 18÷26 Н/Н Н/Н 0.15 0.2
Помещения для отдыха и учебных занятий 20÷22 18÷24 45÷30 60 0.15 0.2
Межквартирный коридор 18÷20 16÷22 45÷30 60 Н/Н Н/Н
Вестибюль, лестничная клетка 16÷18 14÷20 Н/Н Н/Н Н/Н Н/Н
Кладовые 16÷18 12÷22 Н/Н Н/Н Н/Н Н/Н
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется)
Жилая комната 22÷25 20÷28 60÷30 65 0.2 0.3

Второе – компенсирование потерь тепла через элементы конструкции здания.

Самый главный «противник» системы отопления — это теплопотери через строительные конструкции

Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:

Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями от 5 до 10%
«Мостики холода» через плохо изолированные стыки строительных конструкций от 5 до 10%
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) до 5%
Внешние стены, в зависимости от степени утепленности от 20 до 30%
Некачественные окна и внешние двери порядка 20÷25%, из них около 10% — через негерметизированные стыки между коробками и стеной, и за счет проветривания
Крыша до 20%
Вентиляция и дымоход до 25 ÷30%

Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.

Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.

Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:

Самый примитивный способ подсчета — соотношение 100 Вт/м²

Q = S × 100

Q – необходимая тепловая мощность для помещения;

S – площадь помещения (м²);

100 — удельная мощность на единицу площади (Вт/м²).

Например, комната 3.2 × 5,5 м

S = 3,2 × 5,5 = 17,6 м²

Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт

Расчет тепловой мощности от объема помещения

Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.

Q = S × h × 41 (или 34)

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м³).

Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:

Популярные статьи  Газовый котел для сауны и бани: виды оборудования для организации газового отопления

Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт

Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.

Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.

Коэффициенты расчета тепловых потерь здания

Важно не только знать необходимую формулу, требующуюся для расчета необходимой энергии тепла для обогрева постройки, но и применять следующие коэффициенты, которые позволяют учитывать абсолютно все факторы, влияющие на такие вычисления:

  • К1 – это тип окон, которыми оборудовано конкретное помещение;
  • К2 – это показатели тепловой изоляции стен конструкции;
  • К3 – показатель соотношения площади оконных проемов и полов;
  • К4 – наименьшая температура снаружи дома;
  • К5 – количество внешних стен, имеющихся в сооружении;
  • К6 – количество этажей в постройке;
  • К7 – параметр высоты помещения.

Если говорить о потерях тепла, осуществляемых через окна, важно помнить о коэффициентах для таких расчетов, которые являются:

  • для окон со стандартным остеклением этот параметр составляет 1,27;
  • для стеклопакетов двухкамерного типа – 1;
  • для трехкамерных стеклопакетов – 0,85.

Не стоит забывать, что увеличение объема окон относительно полов в доме прямо пропорционально увеличению теплопотерь в постройке.

Так, соотношение оконных площадей и пола в жилище будет:

  • для 10% – 0,8;
  • для 10 – 19% – 0,9;
  • для 20% – 1;
  • для 21 – 29% – 1,1;
  • для 30% – 1,2;
  • для 31 – 39% – 1,3;
  • для 40% – 1,4;
  • для 50% – 1,5.

Выполняя расчет потребления необходимого количества энергии тепла, также важно помнить, что для материала, из которого изготовлены стены сооружения, также имеются свои коэффициенты:

  • для блоков или бетонных панелей – от 1,25 до 1,5;
  • для бревенчатых стен или стен из бруса – 1,25;
  • для кирпичной кладки толщиной в 1,5 кирпича – 1,5;
  • для 2,5 кирпичной кладки – 1,1;
  • для блоков из пенобетона – 1.

Стоит учитывать и тот факт, что если температуры за пределами дома являются низкими, то и тепловые потери становятся более существенными, например:

  • если температура достигает -10°C, то коэффициент будет составлять 0,7;
  • если этот параметр является ниже -10°C, то коэффициент должен быть 0,8;
  • если температура составляет -15°C, то цифра будет равна 0,9;
  • при морозе в -20°C коэффициент должен составлять 1;
  • величина коэффициента при -25°C – 1,2;
  • в случае понижения температуры до -30°C коэффициент должен быть равен 1,2;
  • если столбик термометра на улице достигает -35°C, то коэффициент должен составлять 1,3.

Кроме того, рассчитывая объем требуемого для обогрева дома тепла, важно учитывать непосредственно площадь комнаты, которая отображается как Пк, а также удельное значение, которое составляет теплопотери – это УДтп

Преимущества и недостатки воздушного отопления

Бесспорно, воздушное отопление дома имеет ряд неоспоримых достоинств. Так, установщики подобных систем утверждают, что коэффициент полезного действия достигает 93%.

Также, благодаря малой инерционности системы, можно в максимально короткие сроки прогреть помещение.

Кроме того, подобная система позволяет самостоятельно интегрировать отопительное и климатическое устройство, что позволяет поддерживать оптимальную температуру помещения. Помимо этого, в процессе передачи тепла по системе промежуточные звенья отсутствуют.

Схема воздушного отопления. Нажмите для увеличения.

Действительно, ряд позитивных моментов очень привлекателен, за счет чего система воздушного отопления на сегодняшний день пользуется огромной популярностью.

Недостатки

Но среди такого ряда достоинств нужно выделить и некоторые минусы воздушного отопления.

Так, системы воздушного отопления загородного дома можно устанавливать только в процессе строительства непосредственно самого дома, то бишь, если вы сразу не позаботились об отопительной системе, то по завершению строительных работ вам это сделать не удастся.

Следует отметить, что устройство воздушного отопления нуждается в регулярном сервисном обслуживании, так как рано или поздно могут возникать некоторые неполадки, которые способны привести к полной поломке оборудования.

Недостатком такой системы является и то, что вы не сможете ее модернизировать.

Если вы, все-таки, решили установить именно эту систему, вам следует позаботиться о дополнительном источнике электроснабжения, так как устройство для воздушной системы отопления имеет немалую потребность в электричестве.

При всех, как говорится, «за» и «против» системы воздушного отопления частного дома, она широко используется во всей Европе, в особенности в тех странах, где климат более холодный.

Также исследования показывают, что около восьмидесяти процентов дач, коттеджей и загородных домов используют именно систему воздушного отопления, так как это позволяет одновременно обогревать комнаты непосредственно всего помещения.

Специалисты настоятельно не рекомендуют в этом деле принимать поспешных решений, которые впоследствии могут повлечь за собой ряд негативных моментов.

Для того чтобы оборудовать отопительную систему своими руками, вам потребуется иметь определенный багаж знаний, а также обладать навыками и умениями.

Помимо этого, следует запастись терпение, ведь этот процесс, как показывает практика, занимает немало времени. Безусловно, специалисты с этой задачей справятся куда более быстрее непрофессионального застройщика, но ведь за это придется заплатить.

Поэтому многие, все же, отдают предпочтение позаботиться об отопительной системе самостоятельно, хотя, все-таки, в процессе работы вам все равно может потребоваться помощь.

Запомните, правильно установленная отопительная система – это залог уютного жилища, теплота которого будет согревать вас даже в самые жуткие морозы.

Первый способ – классический (см. рисунок

1. Процессы обработки наружного воздуха:

  • нагрев наружного воздуха в калорифере 1-го подогрева;
  • увлажнение по адиабатному циклу;
  • нагрев в калорифере 2-го подогрева.

2. Из точки с параметрами наружного воздуха — (•) Н проводим линию постоянного влагосодержания — dН = const.

Эта линия характеризует процесс нагревания наружного воздуха в калорифере 1-го подогрева. Конечные параметры наружного воздуха после его нагревания будут определены в пункте 8.

3. Из точки с параметрами приточного воздуха — (•) П проводим линию постоянного влагосодержания dП = const до пересечения с линией относительной влажности φ = 90% (эту относительную влажность стабильно обеспечивает оросительная камера при адиабатическом увлажнении).

Получаем точку — (•) О с параметрами увлажнённого и охлаждённого приточного воздуха.

4. Через точку — (•) О проводим линию изотермы — tО = const до пересечения со шкалой температур.

Значение температуры в точке — (•) О близко к 0°С. Поэтому в оросительной камере возможно образование тумана.

5. Следовательно, в зоне оптимальных параметров внутреннего воздуха в помещении необходимо выбрать другую точку внутреннего воздуха — (•) В1 с той же температурой — tВ1 = 22°С, но с большей относительной влажностью — φВ1 = 55%.

Популярные статьи  Калькулятор расчета толщины утеплителя для мокрого фасада

В нашем случае точка — (•) В1 принималась с самой максимальной относительной влажностью из зоны оптимальных параметров. При необходимости возможно принять и промежуточную относительную влажность из зоны оптимальных параметров.

6. Аналогично пункту 3. Из точки с параметрами приточного воздуха — (•) П1 проводим линию постоянного влагосодержания dП1 = const до пересечения с линией относительной влажности φ = 90% .

Получаем точку — (•) О1 с параметрами увлажнённого и охлаждённого приточного воздуха.

7. Через точку — (•) О1 проводим линию изотермы — tО1 = const до пересечения со шкалой температур и считываем численное значение температуры увлажнённого и охлаждённого воздуха.

Важное замечание!

Минимальное значение конечной температуры воздуха при адиабатическом увлажнении должно находиться в пределах 5 ÷ 7°С.

8. Из точки с параметрами приточного воздуха — (•) П1 проводим линию постоянного теплосодержания — JП1 = сonst до пересечения с линией постоянного влагосодержания наружного воздуха — точка (•) Н — dН = const.

Получаем точку — (•) К1 с параметрами нагретого наружного воздуха в калорифере 1-го подогрева.

9. Процессы обработки наружного воздуха на J-d диаграмме будут изображаться следующими линиями:

  • линия НК1 — процесс нагревания приточного воздуха в калорифере 1-го подогрева;
  • линия К1О1 — процесс увлажнения и охлаждения нагретого воздуха в оросительной камере;
  • линия О1П1 — процесс нагревания увлажнённого и охлаждённого приточного воздуха в калорифере 2-го подогрева.

10. Обработанный наружный приточный воздух с параметрами в точке — (•) П1 поступает в помещение и ассимилирует избытки теплоты и влаги по лучу процесса — линия П1В1. За счёт нарастания температуры воздуха по высоте помещения — grad t. Параметры воздуха изменяются. Процесс изменения параметров происходит по лучу процесса до точки уходящего воздуха — (•) У1.

11. Необходимое количество приточного воздуха для ассимиляции избытков теплоты и влаги в помещении определяем по формуле

12. Требуемое количество теплоты для нагрева наружного воздуха в калорифере 1-го подогрева

Q1 = GΔJ(JK1 — JH) = GΔJ(tK1 — tH), кДж/ч

13. Необходимое количество влаги для увлажнения приточного воздуха в оросительной камере

W = GΔJ(dO1 — dK1), г/ч

14. Требуемое количество теплоты для нагрева увлажнённого и охлаждённого приточного воздуха в калорифере 2-го подогрева

Q2 = GΔJ(JП1 — JO1) = GΔJ x C(tП1 — tO1), кДж/ч

Величину удельной теплоёмкости воздуха С принимаем:

C = 1,005 кДж/(кг × °С).

Чтобы получить тепловую мощность калориферов 1-го и 2-го подогрева в кВт необходимо величины Q1 и Q2 в размерности кДж/ч разделить на 3600.

Принципиальная схема обработки приточного воздуха в холодный период года — ХП, для 1-го способа — классического, смотри на рисунок 9.

Особенности воздушного отопления в домашних условиях

В отличие от традиционных у нас , которые сильно подвержены опасности быть размороженными в зимнее время, воздушное отопление таких недостатков не имеет. Тепловые генераторы легко запускаются в любое время года. Главное, что бы имелось топливо для горения и постоянный доступ свежего воздуха. Такие устройства идеальны для загородных домов, которые не нуждаются в постоянном обогреве.

К тому же работающий нагреватель не выделяет абсолютно никаких токсичных веществ. Нагретый до температуры 45-70С   воздух в процессе теплообмена распространяется по всему объему отапливаемой жилплощади. Благодаря рециркуляции достигается возможность использовать для обогрева одну и ту же воздушную массу. В ряде случаев автономные системы оборудуются другими опциями, допускающие подачу наружного воздуха. Наличие в системе внешнего блока создает условия для охлаждения внутренних помещений в жаркий период.

Автоматические терморегуляторы поддерживают необходимый температурный баланс в доме. Автономная система домашнего отопления с использованием нагревателя канального типа одновременно выполняет функции вентиляции.

Расчет системы воздушного отопления — простая методика

Проектирование воздушного отопления не простая задача. Для ее решения необходимо выяснить ряд факторов, самостоятельное определение которых может быть затруднено. Специалисты компании РСВ могут бесплатно сделать для вас предварительный проект по воздушному отоплению помещения на основе оборудования ГРЕЕРС.

Система воздушного отопления, как и любая другая, не может быть создана наобум. Для обеспечения медицинской нормы температуры и свежего воздуха в помещении потребуется комплект оборудования, выбор которого основывается на точном расчете. Существует несколько методик расчета воздушного отопления, разной степени сложности и точности. Обычная проблема расчетов такого типа состоит в отсутствии учета влияния тонких эффектов, предусмотреть которые не всегда имеется возможность

Поэтому производить самостоятельный расчет, не будучи специалистом в сфере отопления и вентиляции, чревато появлением ошибок или просчетов. Тем не менее, можно выбрать наиболее доступный способ, основанный на выборе мощности системы обогрева.

Формула определения теплопотерь:

Q=S*T/R

Где:

  • Q — величина теплопотерь (вт)
  • S — площадь всех конструкций здания (помещения)
  • T — разница внутренней и внешней температур
  • R — тепловое сопротивление ограждающих конструкций

Пример:

Здание площадью 800 м2 (20×40 м), высотой 5 м, имеется 10 окон размером 1,5×2 м. Находим площадь конструкций: 800 + 800 = 1600 м2 (площадь пола и потолка) 1,5 × 2 × 10 = 30 м2 (площадь окон) (20 + 40) × 2 × 5 = 600 м2 (площадь стен). Вычитаем отсюда площадь окон, получаем «чистую» площадь стен 570 м2

В таблицах СНиП находим тепловое сопротивление бетонных стен, перекрытия и пола и окон. Можно определить его самостоятельно по формуле:

Где:

  • R — тепловое сопротивление
  • D — толщина материала
  • K — коэффициент теплопроводности

Для простоты примем толщину стен и пола с потолком одинаковой, равной 20 см. Тогда тепловое сопротивление будет равно 0,2 м / 1,3= 0,15 (м2*К)/Вт Тепловое сопротивление окон выберем из таблиц: R = 0,4 (м2*К)/Вт Разницу температур примем за 20°С (20°С внутри и 0°С снаружи).

Тогда для стен получаем

  • 2150 м2 × 20°С / 0,15 = 286666=286 кВт
  • Для окон: 30 м2 × 20°С/ 0,4 = 1500=1,5 кВт.
  • Суммарные теплопотери: 286 + 1,5 = 297,5 кВт.

Такова величина теплопотерь, которые необходимо компенсировать при помощи воздушного отопления мощностью около 300 кВт

Примечательно, что при использовании утепления пола и стен теплопотери снижаются как минимум на порядок.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: